Reduced Row

 Echelon Form (RREF)
Solving system of linear equation

A complex system of linear equations

A simple system of linear equations

1. Interchange any two rows of the matrix
2. Multiply every entry of some row by the same nonzero scalar
3. Add a multiple of one row of the matrix to another row

階層

Reduced Row Echelon Form

- A system of linear equations is easily solvable if its augmented matrix is in reduced row echelon form
- Row Echelon Form (REF)

1. Each nonzero row lies above every zero row
2. The leading entries are in echelon form

Reduced Row Echelon Form

- A system of linear equations is easily solvable if its augmented matrix is in reduced row echelon form
- Row Echelon Form (REF)

NO

1. Each nonzero row lies above every zero row
2. The leading entries are in echelon form

No zero rows

Reduced Row Echelon Form

- A system of linear equations is easily solvable if its augmented matrix is in reduced row echelon form
- Reduced Row Echelon Form (RREF)

1-2 The matrix is in row echelon form
3. The columns containing the leading entries are standard vectors.

Reduced Row Echelon Form

- A system of linear equations is easily solvable if its augmented matrix is in reduced row echelon form
-Reduced Row Echelon Form (RREF)

1-2 The matrix is in row echelon form
3. The columns containing the leading entries are standard vectors.

Reduced Row Echelon Form

The pivot positions of A are $(1,1),(2,3)$ and $(3,4)$.
The pivot columns of A are $1^{\text {st }}, 3^{\text {rd }}$ and $4^{\text {th }}$ columns.

RREF is unique!

- A matrix can be transformed into multiple REF by row operation, but only one RREF

